Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Elife ; 112022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35801637

RESUMO

The definition of correlates of protection is critical for the development of next-generation SARS-CoV-2 vaccine platforms. Here, we propose a model-based approach for identifying mechanistic correlates of protection based on mathematical modelling of viral dynamics and data mining of immunological markers. The application to three different studies in non-human primates evaluating SARS-CoV-2 vaccines based on CD40-targeting, two-component spike nanoparticle and mRNA 1273 identifies and quantifies two main mechanisms that are a decrease of rate of cell infection and an increase in clearance of infected cells. Inhibition of RBD binding to ACE2 appears to be a robust mechanistic correlate of protection across the three vaccine platforms although not capturing the whole biological vaccine effect. The model shows that RBD/ACE2 binding inhibition represents a strong mechanism of protection which required significant reduction in blocking potency to effectively compromise the control of viral replication.


Assuntos
COVID-19 , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Primatas/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo
2.
Diabetes ; 71(8): 1735-1745, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35622068

RESUMO

Thymic presentation of self-antigens is critical for establishing a functional yet self-tolerant T-cell population. Hybrid peptides formed through transpeptidation within pancreatic ß-cell lysosomes have been proposed as a new class of autoantigens in type 1 diabetes (T1D). While the production of hybrid peptides in the thymus has not been explored, due to the nature of their generation, it is thought to be highly unlikely. Therefore, hybrid peptide-reactive thymocytes may preferentially escape thymic selection and contribute significantly to T1D progression. Using an antibody-peptide conjugation system, we targeted the hybrid insulin peptide (HIP) 2.5HIP toward thymic resident Langerin-positive dendritic cells to enhance thymic presentation during the early neonatal period. Our results indicated that anti-Langerin-2.5HIP delivery can enhance T-cell central tolerance toward cognate thymocytes in NOD.BDC2.5 mice. Strikingly, a single dose treatment with anti-Langerin-2.5HIP during the neonatal period delayed diabetes onset in NOD mice, indicating the potential of antibody-mediated delivery of autoimmune neoantigens during early stages of life as a therapeutic option in the prevention of autoimmune diseases.


Assuntos
Diabetes Mellitus Tipo 1 , Animais , Anticorpos , Autoantígenos , Tolerância Central , Insulina , Insulina Regular Humana , Camundongos , Camundongos Endogâmicos NOD , Peptídeos , Timo
3.
EBioMedicine ; 80: 104062, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35594660

RESUMO

BACKGROUND: There is an urgent need of a new generation of vaccine that are able to enhance protection against SARS-CoV-2 and related variants of concern (VOC) and emerging coronaviruses. METHODS: We identified conserved T- and B-cell epitopes from Spike (S) and Nucleocapsid (N) highly homologous to 38 sarbecoviruses, including SARS-CoV-2 VOCs, to design a protein subunit vaccine targeting antigens to Dendritic Cells (DC) via CD40 surface receptor (CD40.CoV2). FINDINGS: CD40.CoV2 immunization elicited high levels of cross-neutralizing antibodies against SARS-CoV-2, VOCs, and SARS-CoV-1 in K18-hACE2 transgenic mice, associated with viral control and survival after SARS-CoV-2 challenge. A direct comparison of CD40.CoV2 with the mRNA BNT162b2 vaccine showed that the two vaccines were equally immunogenic in mice. We demonstrated the potency of CD40.CoV2 to recall in vitro human multi-epitope, functional, and cytotoxic SARS-CoV-2 S- and N-specific T-cell responses that are unaffected by VOC mutations and cross-reactive with SARS-CoV-1 and, to a lesser extent, MERS epitopes. INTERPRETATION: We report the immunogenicity and antiviral efficacy of the CD40.CoV2 vaccine in a preclinical model providing a framework for a pan-sarbecovirus vaccine. FUNDINGS: This work was supported by INSERM and the Investissements d'Avenir program, Vaccine Research Institute (VRI), managed by the ANR and the CARE project funded from the Innovative Medicines Initiative 2 Joint Undertaking (JU).


Assuntos
COVID-19 , Vacinas Virais , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina BNT162 , COVID-19/prevenção & controle , Humanos , Camundongos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética
4.
Front Immunol ; 12: 735584, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34917073

RESUMO

Common approaches for monitoring T cell responses are limited in their multiplexity and sensitivity. In contrast, deep sequencing of the T Cell Receptor (TCR) repertoire provides a global view that is limited only in terms of theoretical sensitivity due to the depth of available sampling; however, the assignment of antigen specificities within TCR repertoires has become a bottleneck. This study combines antigen-driven expansion, deep TCR sequencing, and a novel analysis framework to show that homologous 'Clusters of Expanded TCRs (CETs)' can be confidently identified without cell isolation, and assigned to antigen against a background of non-specific clones. We show that clonotypes within each CET respond to the same epitope, and that protein antigens stimulate multiple CETs reactive to constituent peptides. Finally, we demonstrate the personalized assignment of antigen-specificity to rare clones within fully-diverse uncultured repertoires. The method presented here may be used to monitor T cell responses to vaccination and immunotherapy with high fidelity.


Assuntos
Separação Celular/métodos , Técnicas Imunológicas/métodos , Receptores de Antígenos de Linfócitos T/análise , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Humanos
5.
J Immunol ; 207(8): 2060-2076, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34551965

RESUMO

CD40 is a potent activating receptor within the TNFR family expressed on APCs of the immune system, and it regulates many aspects of B and T cell immunity via interaction with CD40 ligand (CD40L; CD154) expressed on the surface of activated T cells. Soluble CD40L and agonistic mAbs directed to CD40 are being explored as adjuvants in therapeutic or vaccination settings. Some anti-CD40 Abs can synergize with soluble monomeric CD40L. We show that direct fusion of CD40L to certain agonistic anti-CD40 Abs confers superagonist properties, reducing the dose required for efficacy, notably greatly increasing total cytokine secretion by human dendritic cells. The tetravalent configuration of anti-CD40-CD40L Abs promotes CD40 cell surface clustering and internalization and is the likely mechanism of increased receptor activation. CD40L fused to either the L or H chain C termini, with or without flexible linkers, were all superagonists with greater potency than CD40L trimer. The increased anti-CD40-CD40L Ab potency was independent of higher order aggregation. Moreover, the anti-CD40-CD40L Ab showed higher potency in vivo in human CD40 transgenic mice compared with the parental anti-CD40 Ab. To broaden the concept of fusing agonistic Ab to natural ligand, we fused OX40L to an agonistic OX40 Ab, and this resulted in dramatically increased efficacy for proliferation and cytokine production of activated human CD4+ T cells as well as releasing the Ab from dependency on cross-linking. This work shows that directly fusing antireceptor Abs to ligand is a useful strategy to dramatically increase agonist potency.


Assuntos
Anticorpos Monoclonais/metabolismo , Linfócitos B/imunologia , Antígenos CD40/agonistas , Ligante de CD40/metabolismo , Células Dendríticas/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Linfócitos T/imunologia , Animais , Anticorpos Monoclonais/genética , Antígenos CD40/imunologia , Ligante de CD40/genética , Células CHO , Diferenciação Celular , Cricetulus , Citocinas/metabolismo , Humanos , Ativação Linfocitária , Agregação de Receptores , Proteínas Recombinantes de Fusão/genética
6.
Nat Commun ; 12(1): 5215, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34471122

RESUMO

Achieving sufficient worldwide vaccination coverage against SARS-CoV-2 will require additional approaches to currently approved viral vector and mRNA vaccines. Subunit vaccines may have distinct advantages when immunizing vulnerable individuals, children and pregnant women. Here, we present a new generation of subunit vaccines targeting viral antigens to CD40-expressing antigen-presenting cells. We demonstrate that targeting the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein to CD40 (αCD40.RBD) induces significant levels of specific T and B cells, with long-term memory phenotypes, in a humanized mouse model. Additionally, we demonstrate that a single dose of the αCD40.RBD vaccine, injected without adjuvant, is sufficient to boost a rapid increase in neutralizing antibodies in convalescent non-human primates (NHPs) exposed six months previously to SARS-CoV-2. Vaccine-elicited antibodies cross-neutralize different SARS-CoV-2 variants, including D614G, B1.1.7 and to a lesser extent B1.351. Such vaccination significantly improves protection against a new high-dose virulent challenge versus that in non-vaccinated convalescent animals.


Assuntos
Antígenos CD40/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Linfócitos B/imunologia , Convalescença , Humanos , Macaca , Camundongos , Mutação , Domínios Proteicos , Reinfecção/prevenção & controle , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Linfócitos T/imunologia , Vacinação , Vacinas de Subunidades/imunologia
7.
Front Immunol ; 12: 678036, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34305908

RESUMO

The epithelium-associated cytokine thymic stromal lymphopoietin (TSLP) can induce OX40L and CCL17 expression by myeloid dendritic cells (mDCs), which contributes to aberrant Th2-type immune responses. Herein, we report that such TSLP-induced Th2-type immune response can be effectively controlled by Dectin-1, a C-type lectin receptor expressed by mDCs. Dectin-1 stimulation induced STAT3 activation and decreased the transcriptional activity of p50-RelB, both of which resulted in reduced OX40L expression on TSLP-activated mDCs. Dectin-1 stimulation also suppressed TSLP-induced STAT6 activation, resulting in decreased expression of the Th2 chemoattractant CCL17. We further demonstrated that Dectin-1 activation was capable of suppressing ragweed allergen (Amb a 1)-specific Th2-type T cell response in allergy patients ex vivo and house dust mite allergen (Der p 1)-specific IgE response in non-human primates in vivo. Collectively, this study provides a molecular explanation of Dectin-1-mediated suppression of Th2-type inflammatory responses and suggests Dectin-1 as a target for controlling Th2-type inflammation.


Assuntos
Citocinas/farmacologia , Células Dendríticas/imunologia , Hipersensibilidade/imunologia , Imunidade/efeitos dos fármacos , Lectinas Tipo C/metabolismo , Subunidade p50 de NF-kappa B/metabolismo , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT6/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células Th2/imunologia , Fator de Transcrição RelB/metabolismo , Adulto , Alérgenos/administração & dosagem , Alérgenos/imunologia , Animais , Antígenos de Dermatophagoides/administração & dosagem , Antígenos de Dermatophagoides/imunologia , Antígenos de Plantas/farmacologia , Estudos de Casos e Controles , Dermatophagoides farinae/imunologia , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Hipersensibilidade/sangue , Lectinas Tipo C/agonistas , Macaca mulatta , Masculino , Pessoa de Meia-Idade , Ligante OX40/metabolismo , Proteínas de Plantas/farmacologia , Células Th2/efeitos dos fármacos , beta-Glucanas/farmacologia , Linfopoietina do Estroma do Timo
8.
Proc (Bayl Univ Med Cent) ; 34(4): 437-441, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-34219921

RESUMO

The prevalence and seroconversion rate of SARS-CoV-2 infection among asymptomatic health care workers in the US is unclear. Our study utilized real-time polymerase chain reaction (RT-PCR) SARS-CoV-2 testing and serological evaluation to detect IgG antibodies specific to SARS-CoV-2 antigens in asymptomatic health care workers. A total of 197 subjects with a mean age of 35 years were recruited into the study. While most (67%) reported prolonged contact with known COVID-19 patients, only 8 (4.2%) tested positive on RT-PCR and 23 (11.7%) had detectable levels of IgG antibody to SARS-CoV-2. Out of 19 subjects with detectable IgG antibody at week 1, 11 (57.9%) lost their antibody response by week 3. No statistically significant difference was found in baseline characteristics or exposure status between subjects with positive and negative results on RT-PCR or antibody positivity. In conclusion, we found a low incidence of PCR positivity for SARS-CoV-2 in a high-risk group. This likely demonstrates the effectiveness of proper personal protective equipment use and low transmission risk in health care settings. The detectable IgG antibody titer was low, and a significant portion of subjects lost their antibody response on repeat testing. This may mean that antibody response in asymptomatic patients is categorically different than in symptomatic hospitalized patients with COVID-19.

9.
PLoS Pathog ; 17(7): e1009749, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34324611

RESUMO

The main avenue for the development of an HIV-1 vaccine remains the induction of protective antibodies. A rationale approach is to target antigen to specific receptors on dendritic cells (DC) via fused monoclonal antibodies (mAb). In mouse and non-human primate models, targeting of skin Langerhans cells (LC) with anti-Langerin mAbs fused with HIV-1 Gag antigen drives antigen-specific humoral responses. The development of these immunization strategies in humans requires a better understanding of early immune events driven by human LC. We therefore produced anti-Langerin mAbs fused with the HIV-1 gp140z Envelope (αLC.Env). First, we show that primary skin human LC and in vitro differentiated LC induce differentiation and expansion of naïve CD4+ T cells into T follicular helper (Tfh) cells. Second, when human LC are pre-treated with αLC.Env, differentiated Tfh cells significantly promote the production of specific IgG by B cells. Strikingly, HIV-Env-specific Ig are secreted by HIV-specific memory B cells. Consistently, we found that receptors and cytokines involved in Tfh differentiation and B cell functions are upregulated by LC during their maturation and after targeting Langerin. Finally, we show that subcutaneous immunization of mice by αLC.Env induces germinal center (GC) reaction in draining lymph nodes with higher numbers of Tfh cells, Env-specific B cells, as well as specific IgG serum levels compared to mice immunized with the non-targeting Env antigen. Altogether, we provide evidence that human LC properly targeted may be licensed to efficiently induce Tfh cell and B cell responses in GC.


Assuntos
Vacinas contra a AIDS/imunologia , Antígenos CD/imunologia , HIV-1/imunologia , Imunidade Humoral/imunologia , Células de Langerhans/imunologia , Lectinas Tipo C/imunologia , Lectinas de Ligação a Manose/imunologia , Animais , Humanos , Ativação Linfocitária/imunologia , Camundongos , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia
10.
Front Immunol ; 12: 672143, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093572

RESUMO

Mice reconstituted with a human immune system (humanized mice) provide a robust model to study human immunology, vaccinology, and human infectious diseases. However, the development and function of B cells in humanized mice is impaired. B cells from humanized mice are immature and are impaired in IgM to IgG isotype switch in response to infection or vaccination. In the present study we report that Toll-like receptor 9 (TLR9) agonist CpG-B combined with CD40-targeting vaccination triggered human B cell immunoglobin class-switch from IgM+ to IgG+ B cells in humanized mice. Human B cells from mice vaccinated with CpG-B as adjuvant were more mature in phenotype and produced significant levels of both total IgG and antigen-specific IgG. We found that CpG-B treatment activated human pDCs (plasmacytoid dendritic cells) in vivo to induce interferon-alpha (IFN-α)expression in humanized mice. Pre-depletion of human pDC in vivo abrogated the adjuvant effect of CpG-B. Our results indicate that TLR9 and CD40-targeting vaccination triggers human B cell maturation and immunoglobulin class-switch in a pDC-dependent manner in humanized mice. The findings also shed light on induction of human IgG antibodies in humanized mouse models.


Assuntos
Antígenos CD40/imunologia , Células Dendríticas/imunologia , Receptor Toll-Like 9/imunologia , Vacinação/métodos , Adjuvantes Imunológicos/farmacologia , Animais , Linfócitos B , Células Dendríticas/efeitos dos fármacos , HIV-1 , Humanos , Switching de Imunoglobulina/efeitos dos fármacos , Switching de Imunoglobulina/imunologia , Imunoglobulina G , Camundongos , Oligodesoxirribonucleotídeos/imunologia , Oligodesoxirribonucleotídeos/farmacologia
11.
Front Immunol ; 12: 786144, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095862

RESUMO

CD40 is a potent activating receptor expressed on antigen-presenting cells (APCs) of the immune system. CD40 regulates many aspects of B and T cell immunity via interaction with CD40L expressed on activated T cells. Targeting antigens to CD40 via agonistic anti-CD40 antibody fusions promotes both humoral and cellular immunity, but current anti-CD40 antibody-antigen vaccine prototypes require co-adjuvant administration for significant in vivo efficacy. This may be a consequence of dulling of anti-CD40 agonist activity via antigen fusion. We previously demonstrated that direct fusion of CD40L to anti-CD40 antibodies confers superagonist properties. Here we show that anti-CD40-CD40L-antigen fusion constructs retain strong agonist activity, particularly for activation of dendritic cells (DCs). Therefore, we tested anti-CD40-CD40L antibody fused to antigens for eliciting immune responses in vitro and in vivo. In PBMC cultures from HIV-1-infected donors, anti-CD40-CD40L fused to HIV-1 antigens preferentially expanded HIV-1-specific CD8+ T cells versus CD4+ T cells compared to analogous anti-CD40-antigen constructs. In normal donors, anti-CD40-CD40L-mediated delivery of Influenza M1 protein elicited M1-specific T cell expansion at lower doses compared to anti-CD40-mediated delivery. Also, on human myeloid-derived dendritic cells, anti-CD40-CD40L-melanoma gp100 peptide induced more sustained Class I antigen presentation compared to anti-CD40-gp100 peptide. In human CD40 transgenic mice, anti-CD40-CD40L-HIV-1 gp140 administered without adjuvant elicited superior antibody responses compared to anti-CD40-gp140 antigen without fused CD40L. In human CD40 mice, compared to the anti-CD40 vehicle, anti-CD40-CD40L delivery of Eα 52-68 peptide elicited proliferating of TCR I-Eα 52-68 CD4+ T cells producing cytokine IFNγ. Also, compared to controls, only anti-CD40-CD40L-Cyclin D1 vaccination of human CD40 mice reduced implanted EO771.LMB breast tumor cell growth. These data demonstrate that human CD40-CD40L antibody fused to antigens maintains highly agonistic activity and generates immune responses distinct from existing low agonist anti-CD40 targeting formats. These advantages were in vitro skewing responses towards CD8+ T cells, increased efficacy at low doses, and longevity of MHC Class I peptide display; and in mouse models, a more robust humoral response, more activated CD4+ T cells, and control of tumor growth. Thus, the anti-CD40-CD40L format offers an alternate DC-targeting platform with unique properties, including intrinsic adjuvant activity.


Assuntos
Adjuvantes Imunológicos/farmacologia , Adjuvantes de Vacinas/farmacologia , Anticorpos/imunologia , Antígenos CD40/imunologia , Ligante de CD40/imunologia , Células Dendríticas/imunologia , Vacinas/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Cultivadas , Feminino , HIV-1/imunologia , Humanos , Imunidade Celular/imunologia , Imunidade Humoral/imunologia , Leucócitos Mononucleares/imunologia , Ativação Linfocitária/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia
12.
PLoS Pathog ; 16(11): e1009025, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33253297

RESUMO

The development of HIV-1 vaccines is challenged by the lack of relevant models to accurately induce human B- and T-cell responses in lymphoid organs. In humanized mice reconstituted with human hematopoietic stem cells (hu-mice), human B cell-development and function are impaired and cells fail to efficiently transition from IgM B cells to IgG B cells. Here, we found that CD40-targeted vaccination combined with CpG-B adjuvant overcomes the usual defect of human B-cell switch and maturation in hu-mice. We further dissected hu-B cell responses directed against the HIV-1 Env protein elicited by targeting Env gp140 clade C to the CD40 receptor of antigen-presenting cells. The anti-CD40.Env gp140 vaccine was injected with CpG-B in a homologous prime/boost regimen or as a boost of a NYVAC-KC pox vector encoding Env gp140 clade C. Both regimens elicited Env-specific IgG-switched memory hu-B cells at a greater magnitude in hu-mice primed with NYVAC-KC. Single-cell RNA-seq analysis showed gp140-specific hu-B cells to express polyclonal IgG1 and IgG3 isotypes and a broad Ig VH/VL repertoire, with predominant VH3 family gene usage. These cells exhibited a higher rate of somatic hypermutation than the non-specific IgG+ hu-B-cell counterpart. Both vaccine regimens induced splenic GC-like structures containing hu-B and hu-Tfh-like cells expressing PD-1 and BCL-6. We confirmed in this model that circulating ICOS+ memory hu-Tfh cells correlated with the magnitude of gp140-specific B-cell responses. Finally, the NYVAC-KC heterologous prime led to a more diverse clonal expansion of specific hu-B cells. Thus, this study shows that CD40-targeted vaccination induces human IgG production in hu-mice and provides insights for the development of a CD40-targeting vaccine to prevent HIV-1 infection in humans.


Assuntos
Vacinas contra a AIDS/imunologia , Antígenos CD40/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/prevenção & controle , HIV-1/imunologia , Receptor Toll-Like 9/agonistas , Animais , Anticorpos Neutralizantes/imunologia , Linfócitos B/imunologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , Células-Tronco Hematopoéticas , Humanos , Imunoglobulina G/imunologia , Camundongos , Linfócitos T/imunologia , Vacinação , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia
13.
EBioMedicine ; 47: 492-505, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31492559

RESUMO

BACKGROUND: Autoimmune demyelinating diseases (ADD) are a major cause of neurological disability due to autoreactive cellular and humoral immune responses against brain antigens. A cure for chronic ADD could be obtained by appropriate immunomodulation. METHODS: We implemented a preclinical scheme to foster immune tolerance to myelin oligodendrocyte glycoprotein (MOG), in a cynomolgus-macaque model of experimental autoimmune encephalomyelitis (EAE), in which administration of recombinant human MOG (rhMOG) elicits brain inflammation mediated by MOG-autoreactive CD4+ lymphocytes and anti-MOG IgG. For immunotherapy, we used a recombinant antibody (Ab) directed against the dendritic cell-asialoglycoprotein receptor (DC-ASGPR) fused either to MOG or a control antigen PSA (prostate-specific antigen). FINDINGS: rhMOG and the anti-DC-ASGPR-MOG were respectively detected in CD1a+ DCs or CD163+ cells in the skin of macaques. Intradermal administration of anti-DC-ASGPR-MOG, but not control anti-DC-ASGPR-PSA, was protective against EAE. The treatment prevented the CD4+ T cell activation and proinflammatory cytokine production observed in controls. Moreover, the administration of anti-DC-ASGPR-MOG induced MOG-specific CD4+CD25+FOXP3+CD39+ regulatory lymphocytes and favoured an upsurge in systemic TGFß and IL-8 upon rhMOG re-administration in vivo. INTERPRETATION: We show that the delivery of an anti-DC-ASGPR-MOG allows antigen-specific adaptive immune modulation to prevent the breach of immune tolerance to MOG. Our findings pave the way for therapeutic vaccines for long-lasting remission to grave encephalomyelitis with identified autoantigens, such as ADD associated with anti-MOG autoantibodies. FUND: Work supported by the French ANR (ANR-11-INBS-0008 and ANR-10-EQPX-02-01), NIH (NIH 1 R01 AI 105066), the Baylor Scott and White Healthcare System funding and Roche Research Collaborative grants.


Assuntos
Autoanticorpos/imunologia , Autoantígenos/imunologia , Encefalomielite Autoimune Experimental/prevenção & controle , Glicoproteína Mielina-Oligodendrócito/imunologia , Vacinas/imunologia , Animais , Citocinas/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Encefalomielite Autoimune Experimental/diagnóstico , Humanos , Linfócitos/imunologia , Linfócitos/metabolismo , Macaca , Glicoproteína Mielina-Oligodendrócito/antagonistas & inibidores , Fenótipo , Proteínas Recombinantes , Vacinação , Vacinas/administração & dosagem
14.
Immunohorizons ; 3(3): 110-120, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-31240276

RESUMO

Graft-versus-host disease (GVHD) is one of the major obstacles for the success of allogeneic hematopoietic stem cell transplantation. Here, we report that the interaction between OX40L and OX40 is of critical importance for both induction and progression of acute GVHD (aGVHD) driven by human T cells. Anti-human OX40L monoclonal antibody (hOX40L) treatment could thus effectively reduce the disease severity in a xenogeneic-aGVHD (x-aGVHD) model in both preventative and therapeutic modes. Mechanistically, blocking OX40L-OX40 interaction with an anti-hOX40L antibody reduces infiltration of human T cells in target organs, including liver, gut, lung, and skin. It also decreases IL-21- and TNF-producing T cell responses, while promoting regulatory T cell (Treg) responses without compromising the cytolytic activity of CD8+ T cells. Single blockade of hOX40L was thus more effective than dual blockade of IL-21 and TNF in reducing the severity of aGVHD as well as mortality. Data from this study indicate that OX40L-OX40 interactions play a central role in the pathogenesis of aGVHD induced by human T cells. Therapeutic strategies that can efficiently interrupt OX40L-OX40 interaction in patients might have potential to provide patients with an improved clinical benefit.


Assuntos
Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/metabolismo , Ligante OX40/metabolismo , Receptores OX40/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Doença Aguda , Animais , Anticorpos Monoclonais/farmacologia , Citocinas/metabolismo , Citotoxicidade Imunológica/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Progressão da Doença , Etanercepte/farmacologia , Doença Enxerto-Hospedeiro/tratamento farmacológico , Doença Enxerto-Hospedeiro/patologia , Humanos , Interleucinas/antagonistas & inibidores , Leucócitos/efeitos dos fármacos , Leucócitos/imunologia , Leucócitos/metabolismo , Camundongos , Ligante OX40/antagonistas & inibidores , Ligação Proteica , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo
15.
J Immunol ; 203(2): 389-399, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31175164

RESUMO

The types and magnitude of Ag-specific immune responses can be determined by the functional plasticity of dendritic cells (DCs). However, how DCs display functional plasticity and control host immune responses have not been fully understood. In this study, we report that ligation of DC-asialoglycoprotein receptor (DC-ASGPR), a C-type lectin receptor (CLR) expressed on human DCs, resulted in rapid activation of Syk, followed by PLCγ2 and PKCδ engagements. However, different from other Syk-coupled CLRs, including Dectin-1, signaling cascade through DC-ASGPR did not trigger NF-κB activation. Instead, it selectively activated MAPK ERK1/2 and JNK. Rapid and prolonged phosphorylation of ERK1/2 led to sequential activation of p90RSK and CREB, which consequently bound to IL10 promoter and initiated cytokine expression. In addition, DC-ASGPR ligation activated Akt, which differentially regulated the activities of GSK-3α/ß and ß-catenin and further contributed to IL-10 expression. Our observations demonstrate that DC-ASGPR induces IL-10 expression via an intrinsic signaling pathway, which provides a molecular explanation for DC-ASGPR-mediated programing of DCs to control host immune responses.


Assuntos
Receptor de Asialoglicoproteína/imunologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/imunologia , Interleucina-10/imunologia , Transdução de Sinais/imunologia , Ativação Transcricional/imunologia , Células Cultivadas , Citocinas/imunologia , Células Dendríticas/imunologia , Humanos , Fatores Imunológicos/imunologia , Lectinas Tipo C/imunologia , Sistema de Sinalização das MAP Quinases/imunologia , NF-kappa B/imunologia , Fosforilação/imunologia , Regiões Promotoras Genéticas/imunologia
16.
Front Immunol ; 10: 1134, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31191525

RESUMO

To determine the contribution of skin DC subsets in the regulation of humoral immunity, we used a well-characterized antigen targeting system to limit antigen availability and presentation to certain skin-derived DC subsets. Here we show that delivery of foreign antigen to steady state Langerhans cells (LCs) and cDC1s through the same receptor (Langerin) led to, respectively, robust vs. minimal-to-null humoral immune response. LCs, unlike cDC1s, supported the formation of germinal center T follicular helper cells (GC-Tfh) antigen dose-dependently and then, likely licensed by these T cells, some of the LCs migrated to the B cell area to initiate B cell responses. Furthermore, we found that the cDC1s, probably through their superior T cell activation capacity, prevented the LCs from inducing GC-Tfh cells and humoral immune responses. We further show that targeted delivery of cytokines to DCs can be used to modulate DC-induced humoral immune responses, which has important therapeutic potential. Finally, we show that human LCs, unlike monocyte-derived DCs, can support GC Tfh generation in an in vitro autologous system; and in agreement with mouse data, we provide evidence in NHP studies that targeting LCs without adjuvants is an effective way to induce antibody responses, but does not trigger CD8+ T cell responses. Our findings suggest that the major limitations of some relatively ineffective vaccines currently in use or in development might be that (1) they are not formulated to specifically target a certain subset of DCs and/or (2) the antigen dose is not tailored to maximize the intrinsic/pre-programmed capabilities of the specific DC subset. This new and substantial departure from the status quo is expected to overcome problems that have hindered our ability to generate effective vaccines against some key pathogens.


Assuntos
Células Dendríticas/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Transferência Adotiva , Animais , Linfócitos B/imunologia , Diferenciação Celular , Feminino , Proteína do Núcleo p24 do HIV/imunologia , Humanos , Imunidade Humoral , Linfonodos/imunologia , Macaca fascicularis , Masculino , Camundongos Transgênicos , Pele/citologia , Pele/imunologia
17.
PLoS One ; 13(11): e0207794, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30500852

RESUMO

HIV-1 infection can be controlled by anti-retroviral drug therapy, but this is a lifetime treatment and the virus remains latent and rapidly rebounds if therapy is stopped. HIV-1-infected individuals under this drug regimen have increased rates of cancers, cardiovascular diseases, and autoimmunity due to compromised immunity. A therapeutic vaccine boosting cellular immunity against HIV-1 is therefore desirable and, possibly combined with other immune modulating agents, could obviate the need for long-term drug therapies. An approach to elicit strong T cell-based immunity is to direct virus protein antigens specifically to dendritic cells (DCs), which are the key cell type for controlling immune responses. For eliciting therapeutic cellular immunity in HIV-1-infected individuals, we developed vaccines comprised of five T cell epitope-rich regions of HIV-1 Gag, Nef, and Pol (HIV5pep) fused to monoclonal antibodies that bind either, the antigen presenting cell activating receptor CD40, or the endocytic dendritic cell immunoreceptor DCIR. The study aimed to demonstrate vaccine safety, establish efficacy for broad T cell responses in both primed and naïve settings, and identify one candidate vaccine for human therapeutic development. The vaccines were administered to Rhesus macaques by intradermal injection with poly-ICLC adjuvant. The animals were either i) naïve or, ii) previously primed with modified vaccinia Ankara vector (MVA) encoding HIV-1 Gag, Pol, and Nef (MVA GagPolNef). In the MVA-primed groups, both DC-targeting vaccinations boosted HIV5pep-specific blood CD4+ T cells producing multiple cytokines, but did not affect the MVA-elicited CD8+ T cell responses. In the naive groups, both DC-targeting vaccines elicited antigen-specific polyfunctional CD4+ and CD8+ T cell responses to multiple epitopes and these responses were unchanged by a subsequent MVA GagPolNef boost. In both settings, the T cell responses elicited via the CD40-targeting vaccine were more robust and were detectable in all the animals, favoring further development of the CD40-targeting vaccine for therapeutic vaccination of HIV-1-infected individuals.


Assuntos
Vacinas contra a AIDS/imunologia , Antígenos CD40/imunologia , Células Dendríticas/imunologia , Epitopos de Linfócito T/imunologia , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Receptores Imunológicos/imunologia , Animais , Macaca mulatta , Masculino , Terapia de Alvo Molecular
18.
J Clin Invest ; 128(10): 4387-4396, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30148455

RESUMO

Activation of HIV-1 reservoirs and induction of anti-HIV-1 T cells are critical to control HIV-1 rebound after combined antiretroviral therapy (cART). Here we evaluated in humanized mice (hu-mice) with persistent HIV-1 infection the therapeutic effect of TLR3 agonist and a CD40-targeting HIV-1 vaccine, which consists of a string of 5 highly conserved CD4+ and CD8+ T cell epitope-rich regions of HIV-1 Gag, Nef, and Pol fused to the C-terminus of a recombinant anti-human CD40 antibody (αCD40.HIV5pep). We show that αCD40.HIV5pep vaccination coadministered with poly(I:C) adjuvant induced HIV-1-specific human CD8+ and CD4+ T cell responses in hu-mice. Interestingly, poly(I:C) treatment also reactivated HIV-1 reservoirs. When administrated in therapeutic settings in HIV-1-infected hu-mice under effective cART, αCD40.HIV5pep with poly(I:C) vaccination induced HIV-1-specific CD8+ T cells and reduced the level of cell-associated HIV-1 DNA (or HIV-1 reservoirs) in lymphoid tissues. Most strikingly, the vaccination significantly delayed HIV-1 rebound after cART cessation. In summary, the αCD40.HIV5pep with poly(I:C) vaccination approach both activates replication of HIV-1 reservoirs and enhances the anti-HIV-1 T cell response, leading to a reduced level of cell-associated HIV-1 DNA or reservoirs. Our proof-of-concept study has significant implication for the development of CD40-targeting HIV-1 vaccine to enhance anti-HIV-1 immunity and reduce HIV-1 reservoirs in patients with suppressive cART.


Assuntos
Vacinas contra a AIDS , Antígenos CD40/imunologia , Epitopos de Linfócito T , HIV-1/imunologia , Proteínas do Vírus da Imunodeficiência Humana , Poli I-C/farmacologia , Receptor 3 Toll-Like/agonistas , Vacinas contra a AIDS/imunologia , Vacinas contra a AIDS/farmacologia , Animais , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/farmacologia , Proteínas do Vírus da Imunodeficiência Humana/imunologia , Proteínas do Vírus da Imunodeficiência Humana/farmacologia , Humanos , Imunidade Celular/efeitos dos fármacos , Camundongos , Camundongos Knockout , Receptor 3 Toll-Like/imunologia
19.
Cancer Res ; 78(18): 5243-5258, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30012670

RESUMO

Inflammation affects tumor immune surveillance and resistance to therapy. Here, we show that production of IL1ß in primary breast cancer tumors is linked with advanced disease and originates from tumor-infiltrating CD11c+ myeloid cells. IL1ß production is triggered by cancer cell membrane-derived TGFß. Neutralizing TGFß or IL1 receptor prevents breast cancer progression in humanized mouse model. Patients with metastatic HER2- breast cancer display a transcriptional signature of inflammation in the blood leukocytes, which is attenuated after IL1 blockade. When present in primary breast cancer tumors, this signature discriminates patients with poor clinical outcomes in two independent public datasets (TCGA and METABRIC).Significance: IL1ß orchestrates tumor-promoting inflammation in breast cancer and can be targeted in patients using an IL1 receptor antagonist. Cancer Res; 78(18); 5243-58. ©2018 AACRSee related commentary by Dinarello, p. 5200.


Assuntos
Neoplasias da Mama/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Interleucina-1beta/metabolismo , Transcrição Gênica , Animais , Neoplasias da Mama/tratamento farmacológico , Antígeno CD11c/metabolismo , Capecitabina/administração & dosagem , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Feminino , Furanos/administração & dosagem , Humanos , Inflamação , Proteína Antagonista do Receptor de Interleucina 1/administração & dosagem , Cetonas/administração & dosagem , Leucócitos Mononucleares/citologia , Macrófagos/metabolismo , Camundongos , Camundongos SCID , Células Mieloides/metabolismo , Metástase Neoplásica , Transplante de Neoplasias , Paclitaxel/administração & dosagem , Projetos Piloto , Fator de Crescimento Transformador beta/metabolismo
20.
Cell Rep ; 21(13): 3681-3690, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29281818

RESUMO

The events required for the induction of broad neutralizing antibodies (bnAbs) following HIV-1 envelope (Env) vaccination are unknown, and their induction in animal models as proof of concept would be critical. Here, we describe the induction of plasma antibodies capable of neutralizing heterologous primary (tier 2) HIV-1 strains in one macaque and two rabbits. Env immunogens were designed to induce CD4 binding site (CD4bs) bnAbs, but surprisingly, the macaque developed V1V2-glycan bnAbs. Env immunization of CD4bs bnAb heavy chain rearrangement (VHDJH) knockin mice similarly induced V1V2-glycan neutralizing antibodies (nAbs), wherein the human CD4bs VH chains were replaced with mouse rearrangements bearing diversity region (D)-D fusions, creating antibodies with long, tyrosine-rich HCDR3s. Our results show that Env vaccination can elicit broad neutralization of tier 2 HIV-1, demonstrate that V1V2-glycan bnAbs are more readily induced than CD4bs bnAbs, and define VH replacement and diversity region fusion as potential mechanisms for generating V1V2-glycan bnAb site antibodies.


Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Sequência de Aminoácidos , Animais , Modelos Animais de Doenças , Epitopos/química , Epitopos/imunologia , Imunização , Macaca mulatta , Camundongos , Polissacarídeos/imunologia , Multimerização Proteica , Coelhos , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...